metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Haruo Akashi* and Tsutomu Yamauchi

Research Institute of Natural Sciences, Okayama University of Science, Ridai-cho, Okayama, 700-0005, Japan

Correspondence e-mail: akashi@high.ous.ac.jp

Key indicators

Single-crystal X-ray study T = 93 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.031 wR factor = 0.091 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrasodium tetrahydroxytetrathiacalix[4]arenetetrasulfonate tetradecahydrate

The title compound, $4Na^+ \cdot C_{24}H_{12}O_{16}S_8^{4-} \cdot 14H_2O$ (Na₄TCAS-14H₂O), was found to crystallize in the triclinic space group $P\overline{1}$. The X-ray structure revealed that the centrosymmetric TCAS⁴⁻ anion adopts the 1,2-alternate conformation. The sodium cations are surrounded by five or six O atoms in the crystal structure. All sodium ions form centrosymmetric aquabridged dimers, Na(μ -H₂O)₂Na, which are also coordinated by sulfonate O atoms and contribute to the formation of a three-dimensional network. The compound exists in the solid state as layers of anionic thiacalixarenes, alternating with inorganic layers that contain sodium cations and water molecules. Intercalation of metal ions into the solid-state layered structure was observed.

Comment

The title compound, (I) ($Na_4TCAS \cdot 14H_2O$), affords the first crystal structure of Na_4TCAS without organic solvents as guest molecules, while crystal structures of Na_4TCAS with acetone or 1,4-dioxane (Iki *et al.*, 2001) and an analog of thiacalix[4]arenetetrasulfonate, $Na_5[S_8C_{24}O_{24}H_{11}]$ ·EtOH·-9H₂O (Iki *et al.*, 2002), are already known.

A view of the TCAS^{4–} anion is shown in Fig. 1. Selected bond distances and angles are given in Table 1. The TCAS^{4–} anion adopts the 1,2-alternate conformation. The anion lies on an inversion center. The center of symmetry resides on the mid-point of two S atoms (S1 and S1*). The bond distances and angles in the TCAS^{4–} anion are similar to those observed in Na₄[C₂₄H₁₂O₁₆S₈]·2C₄H₈O₂·9H₂O (Iki *et al.*, 2001).

The environments around the ions Na1 and Na2 are different. The Na1 ion is coordinated by six O atoms (O2 and $O6^{ii}$ from sulfonate O atoms, and O9, O10, O11 and O11ⁱⁱⁱ from water molecules; see Table 1 for symmetry codes) in a distorted octahedral manner. The NaO₆ polyhedra share a common edge. The bridging positions are occupied by water molecules (O11 and O11ⁱⁱⁱ). A center of symmetry lies at the

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 15 April 2003 Accepted 6 May 2003 Online 16 May 2003

ORTEP-3 drawing of the TCAS^{4–} anion, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 80% probability level and H atoms are shown as spheres of arbitrary radii. Atoms marked with an asterisk are related to those without an asterisk by a center of symmetry.

midpoint of the two aqua-bridges. The Na1···O11 [2.346 (2) Å] and Na1···O11ⁱⁱⁱ [2.474 (2) Å] distances are in the range of the usual Na··· μ -H₂O distances (2.35–2.48 Å) [for examples see Dressick *et al.* (2000) and Achour *et al.* (1998)]. The Na2 ion is coordinated by five O atoms (O3 and O8^{iv} from sulfonate O atoms, and O12, O13 and O13^v from water molecules; see Table 1 for symmetry codes) in a distorted trigonal bipyramidal manner. The NaO₅ polyhedra share a common edge. The bridging positions are occupied by water molecules (O13 and O13^v). A center of symmetry lies at the mid-point of the two aqua bridges. The Na2···O13 [2.388 (2) Å] and Na2···O13^v [2.388 (2) Å] distances are in the usual range for Na··· μ -H₂O distances (2.27–2.44 Å) [for examples see Hauptmann *et al.* (1999) and Jeon *et al.* (1996)].

The crystal structure of (I), viewed along the *b* axis, is shown in Fig. 2. Since sulfonate O atoms are coordinated to Na⁺ cations, TCAS^{4–} anions are further connected by sodium aqua dimers, Na $-(\mu$ -H₂O)₂-Na, forming a three-dimensional network.

The compound exists in the solid state as layers of anionic thiacalixarenes in the 1,2-alternate configuration, alternating with inorganic layers that contain sodium cations and water molecules. The overall structure bears a close resemblance to those found in clay minerals. This similarity has also been

Projection of the structure of compound (I) along the b axis. The C, O, Na and S atoms are drawn in black, red, blue and yellow, respectively. Non-coordinated water molecules have been omitted for clarity.

reported in studies of other calixarene compounds (Atwood et al., 1988; Coleman et al., 1988).

Several metal (Fe, Co, Ni, Cu, Zn) complexes of watersoluble thiacalix[4]arenetetrasulfonate have been prepared by the incorporation of the metal ions into the solid-state layered structure. There have also been several reports of the intercalation of metal ions with water-soluble calix[4]arenes (Atwood *et al.*, 1992). X-ray structure analyses of metal complexes of water-soluble thiacalix[4]arenetetrasulfonate are in progress.

Experimental

A sample of sodium thiacalix[4]arenetetrasulfonate, (Na₄TCAS), was obtained from Cosmo Oil Co. Ltd. Crystals suitable for single-crystal X-ray diffraction were recrystallized by adding sodium chloride to an aqueous solution of Na₄(TCAS).

Crystal data

$4Na^{+} \cdot C_{24}H_{12}O_{16}S_{8}^{4-} \cdot 14H_{2}O_{16}S_{8}^{4-} \cdot 1$	Z = 1
$M_r = 1157.00$	$D_x = 1.730 \text{ Mg m}^{-3}$
Triclinic, P1	Mo K α radiation
a = 8.2974(7) Å	Cell parameters from 4591
b = 8.8446 (6) Å	reflections
c = 15.789(1) Å	$\theta = 2.5 - 27.5^{\circ}$
$\alpha = 95.743 \ (4)^{\circ}$	$\mu = 0.54 \text{ mm}^{-1}$
$\beta = 102.490 \ (2)^{\circ}$	T = 93.1 K
$\gamma = 97.897 \ (4)^{\circ}$	Plate, colorless
$V = 1110.4 (1) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Rigaku R-AXIS-IV diffractometer	3541 reflections with $F^2 > 2\sigma(F^2)$
ωscans	$R_{\rm int} = 0.018$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(Higashi, 1995)	$h = -10 \rightarrow 10$
$T_{\min} = 0.848, \ T_{\max} = 0.948$	$k = -11 \rightarrow 11$
8541 measured reflections	$l = -20 \rightarrow 20$
4678 independent reflections	

Refinement

Refinement on F^2	Only coordinates of H atoms
$R[F^2 > 2\sigma(F^2)] = 0.031$	refined
$wR(F^2) = 0.091$	$w = 1/[0.001F_o^2 + \sigma^2(F_o) + 0.5]$
S = 0.84	$(4F_o^2)$
4233 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
358 parameters	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S1-C6	1.770 (2)	C5-C6	1.386 (3)
S1-C12	1.769 (2)	C7-C8	1.405 (3)
S2-C2	1.792 (2)	C7-C12	1.398 (3)
S2-C8 ⁱ	1.785 (2)	C8-C9	1.393 (3)
S3-O2	1.4590 (18)	C9-C10	1.390 (3)
\$3-03	1.4524 (18)	C10-C11	1.390 (3)
S3-O4	1.4715 (18)	C11-C12	1.392 (3)
S3-C4	1.763 (2)	Na1-O2	2.382 (2)
S4-O6	1.4590 (18)	Na1-O6 ⁱⁱ	2.434 (2)
S4-O7	1.4635 (18)	Na1-O9	2.373 (2)
S4-O8	1.4593 (18)	Na1-O10	2.531 (2)
S4-C10	1.772 (2)	Na1-O11	2.347 (2)
O1-C1	1.347 (3)	Na1-O11 ⁱⁱⁱ	2.475 (2)
O5-C7	1.350 (3)	Na2-O3	2.252 (2)
C1-C2	1.404 (4)	Na2–O8 ^{iv}	2.402 (2)
C1-C6	1.406 (3)	Na2-O12	2.292 (2)
C2-C3	1.395 (3)	Na2-O13	2.387 (2)
C3-C4	1.396 (3)	Na2-O13 ^v	2.423 (2)
C4-C5	1.383 (4)		
C6-S1-C12	105.61 (11)	C8-C7-C12	119.4 (2)
$C2 - S2 - C8^{i}$	100.93 (11)	$S2^{i}-C8-C9$	120.93 (18)
02-\$3-03	112.97 (11)	$S2^{i}-C8-C7$	119.39 (18)
02 - 83 - 04	111.40 (11)	C7 - C8 - C9	119.6 (2)
03-83-04	112.24 (11)	C8-C9-C10	120.2(2)
O2-S3-C4	106.15 (11)	S4-C10-C9	118.03 (18)
O3-S3-C4	107.77 (11)	S4-C10-C11	121.50 (18)
O4-S3-C4	105.79 (11)	C9-C10-C11	120.5 (2)
O6-S4-O7	112.21 (11)	C10-C11-C12	119.5 (2)
06-\$4-08	113.01 (11)	S1-C12-C7	121.24 (18)
07-\$4-08	112.27 (11)	S1-C12-C11	118.07 (18)
O6-S4-C10	105.68 (11)	C7-C12-C11	120.6 (2)
O7-S4-C10	106.04 (11)	O2-Na1-O6 ⁱⁱ	85.21 (7)
O8-S4-C10	107.00 (11)	O2-Na1-O9	166.16 (8)
\$3-O2-Na1	134.69 (11)	O2-Na1-O10	104.32 (7)
\$3-O3-Na2	148.88 (12)	O2-Na1-O11	88.49 (7)
S4-O6-Na1 ⁱⁱ	149.38 (11)	O2-Na1-O11 ⁱⁱⁱ	79.91 (7)
S4-O8-Na2 ^{iv}	127.9 (1)	O6 ⁱⁱ -Na1-O9	81.28 (7)
Na1-O11-Na1 ⁱⁱⁱ	96.80(7)	O9-Na1-O10	76.97 (7)
Na2-O13-Na2 ^v	94.18 (7)	O9-Na1-O11	95.64 (7)
O1-C1-C2	124.1 (2)	O9-Na1-O11 ⁱⁱⁱ	113.65 (7)
O1-C1-C6	116.6 (2)	O10-Na1-O11	155.35 (8)
C2-C1-C6	119.3 (2)	O11-Na1-O11 ⁱⁱⁱ	83.20 (7)
S2-C2-C1	119.80 (18)	\$3-Na2-O12	165.22 (6)
S2-C2-C3	119.92 (19)	O3-Na2-O12	153.71 (8)
C1-C2-C3	120.2 (2)	O3-Na2-O13	87.89 (7)
C2-C3-C4	119.4 (2)	O3-Na2-O8 ^{iv}	87.03 (7)
S3-C4-C3	120.07 (19)	O3-Na2-O12	153.71 (8)
\$3-C4-C5	118.89 (19)	$O3-Na2-O13^{v}$	102.85 (7)
C3-C4-C5	120.9 (2)	O8 ^{iv} -Na2-O12	87.12 (7)
C4-C5-C6	120.1 (2)	O8 ^{iv} -Na2-O13	143.44 (7)
S1-C6-C1	122.96 (18)	O8 ^{iv} -Na2-O13 ^v	130.56 (7)
S1-C6-C5	116.68 (19)	O12-Na2-O13	81.71 (7)
C1-C6-C5	120.1 (2)	O12-Na2-O13 ^v	100.41 (7)
O5-C7-C8	123.5 (2)	O13-Na2-O13 ^v	85.82 (7)
O5-C7-C12	117.0 (2)		. /

Symmetry codes: (i) -x, -y, 1-z; (ii) 1-x, 1-y, 1-z; (iii) 1-x, -y, -z; (iv) 1-x, -y, 1-z; (v) -x, -1-y, -z.

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
01-H1···015 ^{iv}	0.90	1.95	2.693 (2)	140
O5-H4···O15 ^{vi}	0.82	1.97	2.688 (2)	146
O9−H7···O4 ^{vii}	0.90	1.97	2.831 (3)	159
O9−H8···O14 ^{vii}	0.90	1.86	2.756 (3)	176
O10−H9···O4 ^{vii}	0.90	2.16	3.033 (3)	166
O10−H9···O9	0.90	2.71	3.055 (3)	104
$O10-H10\cdots O7^{iv}$	0.90	2.06	2.939 (3)	165
O11-H11···O3 ⁱⁱⁱ	0.90	2.06	2.894 (2)	153
$O11-H12\cdots O12^{viii}$	0.90	2.07	2.858 (3)	146
$O12-H13\cdots O2^{ix}$	0.90	1.91	2.796 (3)	171
$O12-H14\cdots O4^{vi}$	0.90	1.90	2.793 (3)	170
$O13-H15\cdots O7^{x}$	0.90	2.04	2.935 (3)	173
O13−H16···O9 ⁱⁱⁱ	0.90	1.93	2.787 (3)	159
O14-H17···O5	0.90	2.04	2.910 (3)	163

Symmetry codes: (iii) 1 - x, -y, -z; (iv) 1 - x, -y, 1 - z; (v) -x, -1 - y, -z; (vi) x - 1, y, z; (vii) 1 + x, y, z; (viii) x, 1 + y, z; (ix) x, y - 1, z; (x) x, y - 1, z - 1.

The positional parameters for all H atoms were initially located from a difference map. The coordinate parameters for all H atoms are refined. All water O–H distances and H–O–H angles were restrained to be 0.9 Å and 104°, respectively. The isotropic displacement parameters for all H atoms were fixed at 1.2 times the value of the equivalent isotropic displacement parameter of their carrier atom.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *CrystalStructure*; molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

References

Achour, B., Costa, J., Delgado, R., Garrigues, E., Geraldes, C. F. G. C., Korber, N., Nepveu, F. & Parta, M. I. (1998). *Inorg. Chem.* 37, 2729–2740.

Atwood, J. L., Coleman, A. W., Zhang, H. & Bott, S. G. (1988). J. Inclusion Phenom. Mol. Recognit. Chem. 7, 203–211.

Atwood, J. L., Orr, W. G., Means, N. C., Hamada, F., Zhang, H., Bott, S. G. & Robinson, K. D. (1992). *Inorg. Chem.* 31, 603–606.

Coleman, A. W., Bott, S. G., Morley, S. D., Means, M. C., Robinson K. D., Zhang, H. & Atwood, L. (1988). Angew. Chem. Int. Ed. Engl. 27, 1361–1362.

Dressick, W. J., George, C., Brandow, S. L., Schull, T. L. & Knight, D. A. (2000). J. Org. Chem. 65, 5059–5062.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hauptmann, R., Lackmann, J., Chen, C. & Henkel, G. (1999). Acta Cryst. C55, 1084–1087.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Iki, N., Horiuchi, T., Oka, H., Koyama, K., Morohashi, N., Kabuto, C. & Miyano, S. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2219–2225.

Iki, N., Suzuki, T., Koyama, K., Kuboto, C. & Miyano, S. (2002). Org. Lett. 4, 509–512.

Jeon, Y.-M., Kim, J., Whang, D. & Kim, K. (1996). J. Am. Chem. Soc. 118, 9790–9791.

Rigaku (1998). PROCESS-AUTO. Rigaku, 3-9-12 Akishima, Tokyo 196-8666, Japan.

Rigaku/MSC (2001). *CrystalStructure*. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX, USA 77381-5209, and Rigaku, 3-9-12 Akishima, Tokyo 196-8666, Japan.

Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.